Overview of Characteristic

- Support IEEE802.11b/g/n Wireless Standards
- Based on Self-developed High Cost Effective SOC
- Support UART/GPIO Data Communication Interface
- Support Work As STA/AP Mode
- Support Smart Link Function (APP program provide)
- Support Wireless and Remote Firmware Upgrade Function
- Support External I-PEX or Internal PCB Antenna Option (HF-LPT120)
- Support Copper Line Antenna (HF-LPT120A)
- Single +3.3V Power Supply
- Smallest Size: 22mm x 13.5mm x 6mm, 1x10 2mm Connector (HF-LPT120)
- Smallest Size: 22mm x 14.3mm x 6mm, 1x10 2mm Connector (HF-LPT120A)
- FCC/CE/SRRC Certificated
TABLE OF CONTENTS

LIST OF FIGURES .. 5

LIST OF TABLES .. 6

HISTORY ... 7

1. PRODUCT OVERVIEW ... 8
 1.1. General Description .. 8
 1.1.1 Device Features ... 8
 1.1.2 Device Parameters ... 9
 1.1.3 Key Application .. 9
 1.2. Hardware Introduction .. 10
 1.2.1. Pins Definition .. 10
 1.2.2. Electrical Characteristics .. 11
 1.2.3. Mechanical Size .. 12
 1.2.4. On-board PCB Antenna .. 13
 1.2.5. External Antenna ... 13
 1.2.6. Evaluation Kit ... 14
 1.2.7. Order Information ... 15
 1.3. Typical Application .. 16
 1.3.1. Hardware Typical Application ... 16
 1.4. Internal PCB Antenna .. 17

2. FUNCTIONAL DESCRIPTION ... 19
 2.1. Wireless Networking .. 19
 2.1.1. Basic Wireless Network Based On AP (Infrastructure) .. 19
 2.1.2. Wireless Network Based On STA .. 19
 2.2. Work Mode: Transparent Transmission Mode ... 20
 2.3. Encryption ... 20
 2.4. Parameters Configuration ... 20
 2.5. Firmware Update .. 21
 2.6. SOCKET B Function .. 21
 2.7. Multi-TCP Link Connection (Reserved) ... 21

3. OPERATION GUIDELINE .. 23
 3.1. Configuration ... 23
 3.1.1. Open Web Management Interface ... 23
 3.1.2. System Page ... 24
 3.1.3. Work Mode Page .. 24
 3.1.4. STA Setting Page ... 25
 3.1.5. AP Setting Page .. 26
 3.1.6. Other Setting Page .. 26
 3.1.7. Account Management Page ... 27
 3.1.8. Upgrade Software Page .. 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.9.</td>
<td>Restart Page</td>
</tr>
<tr>
<td>3.1.10.</td>
<td>Restore Page</td>
</tr>
<tr>
<td>3.1.11.</td>
<td>Internal Webpage</td>
</tr>
<tr>
<td>3.2.</td>
<td>Usage Introduction</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Software Debug Tools</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Network Connection</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Default Parameter Setting</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>Module Debug</td>
</tr>
<tr>
<td>3.3.</td>
<td>Typical Application Examples</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Wireless Control Application</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Remote Management Application</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Transparent Serial Port Application</td>
</tr>
</tbody>
</table>

4. AT+INSTRUCTION INTRODUCTION

4.1. Configuration Mode

4.1.1. Switch to Configuration Mode

4.2. AT+Instruction Set Overview

4.2.1. Instruction Syntax Format

4.2.2. AT+Instruction Set

4.2.2.1. AT+E

4.2.2.2. AT+WMODE

4.2.2.3. AT+ENTM

4.2.2.4. AT+MID

4.2.2.5. AT+VER

4.2.2.6. AT+BVER

4.2.2.7. AT+RELD

4.2.2.8. AT+FCLR

4.2.2.9. AT+Z

4.2.2.10. AT+H

4.2.2.11. AT+CFGTF

4.2.2.12. AT+UART

4.2.2.13. AT+NETP

4.2.2.14. AT+MAXSK

4.2.2.15. AT+TCPLK

4.2.2.16. AT+TCPTO

4.2.2.17. AT+TCPDIS

4.2.2.18. AT+SOCKB

4.2.2.19. AT+TCPDISB

4.2.2.20. AT+TCPTOB

4.2.2.21. AT+TCPCLKB

4.2.2.22. AT+WSSSID

4.2.2.23. AT+WSKEY

4.2.2.24. AT+WANN

4.2.2.25. AT+WSMAC

4.2.2.26. AT+WSLK
4.2.2.27. AT+WSLQ ... 45
4.2.2.28. AT+WSCAN ... 45
4.2.2.29. AT+LANN ... 45
4.2.2.30. AT+WAP ... 46
4.2.2.31. AT+WAKEY .. 46
4.2.2.32. AT+WADHCIP ... 46
4.2.2.33. AT+WALK ... 47
4.2.2.34. AT+WALKIND ... 47
4.2.2.35. AT+WAPMXSTA .. 47
4.2.2.36. AT+OTA ... 48
4.2.2.37. AT+UPURL ... 48
4.2.2.38. AT+DISPS ... 48
4.2.2.39. AT+PLANG .. 49
4.2.2.40. AT+WEBU ... 49
4.2.2.41. AT+WLMID .. 49
4.2.2.42. AT+ASWD .. 49
4.2.2.43. AT+SMTLK .. 50
4.2.2.44. AT+SMEM ... 50
4.2.2.45. AT+NDBGL .. 50

5. PACKAGE INFORMATION .. 52
5.1. Recommended Reflow Profile .. 52
5.2. Device Handling Instruction (Module IC SMT Preparation) 52
5.3. Shipping Information .. 53

APPENDIX A: HW REFERENCE DESIGN ... 54

APPENDIX B: HTTP PROTOCOL TRANSFER 55
B.1. Sending HTTP Raw Data in Throughput Mode 55

APPENDIX C: REFERENCES ... 56
C.1. High-Flying Mass Production Tool .. 56
C.2. SmartLink APP V7 Config Tool .. 56
C.3. EVK Quick Start Guide .. 56
C.4. Module Upgrade ... 56
C.5. Other Tools .. 56

APPENDIX D: CONTACT INFORMATION ... 57
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>HF-LPT120 Pins Map</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2</td>
<td>HF-LPT120 Mechanical Dimension</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3</td>
<td>HF-LPT120A Mechanical Dimension</td>
<td>13</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Suggested Module Placement Region</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5</td>
<td>HF-LPT120 External Antenna picture</td>
<td>13</td>
</tr>
<tr>
<td>Figure 6</td>
<td>LPT120/LPT220 EVK</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7</td>
<td>HF-LPT120 Order Information</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8</td>
<td>HF-LPT120A Order Information</td>
<td>15</td>
</tr>
<tr>
<td>Figure 9</td>
<td>HF-LPT120 Hardware Typical Application</td>
<td>16</td>
</tr>
<tr>
<td>Figure 10</td>
<td>HF-LPT120 Antenna</td>
<td>17</td>
</tr>
<tr>
<td>Figure 11</td>
<td>HF-LPT120 Antenna radiation pattern</td>
<td>17</td>
</tr>
<tr>
<td>Figure 12</td>
<td>HF-LPT120 XY plane radiation pattern</td>
<td>18</td>
</tr>
<tr>
<td>Figure 13</td>
<td>HF-LPT120XZ plane radiation pattern</td>
<td>18</td>
</tr>
<tr>
<td>Figure 14</td>
<td>HF-LPT120YZ plane radiation pattern</td>
<td>18</td>
</tr>
<tr>
<td>Figure 15</td>
<td>HF-LPT120 Basic Wireless Network Structure</td>
<td>19</td>
</tr>
<tr>
<td>Figure 16</td>
<td>HF-LPT120 STA Network Structure</td>
<td>19</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Socket B function demo</td>
<td>21</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Multi-TCP Link Data Transmission Structure</td>
<td>22</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Open Web Management page</td>
<td>23</td>
</tr>
<tr>
<td>Figure 20</td>
<td>System Web Page</td>
<td>24</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Work Mode Page</td>
<td>24</td>
</tr>
<tr>
<td>Figure 22</td>
<td>STA Setting Page</td>
<td>25</td>
</tr>
<tr>
<td>Figure 23</td>
<td>STA Scan Page</td>
<td>25</td>
</tr>
<tr>
<td>Figure 24</td>
<td>AP Setting Page</td>
<td>26</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Other Setting Page</td>
<td>26</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Account Page</td>
<td>27</td>
</tr>
<tr>
<td>Figure 27</td>
<td>Upgrade SW page</td>
<td>27</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Restart Page</td>
<td>28</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Restore Page</td>
<td>28</td>
</tr>
<tr>
<td>Figure 30</td>
<td>Internal Webpage</td>
<td>29</td>
</tr>
<tr>
<td>Figure 31</td>
<td>STA Interface Debug Connection</td>
<td>29</td>
</tr>
<tr>
<td>Figure 32</td>
<td>AP Interface Debug Connection</td>
<td>29</td>
</tr>
<tr>
<td>Figure 33</td>
<td>“CommTools” Serial Debug Tools</td>
<td>30</td>
</tr>
<tr>
<td>Figure 34</td>
<td>“TCPUDPDbg” Tools Create Connection</td>
<td>30</td>
</tr>
<tr>
<td>Figure 35</td>
<td>“TCPUDPDbg” Tools Setting</td>
<td>31</td>
</tr>
<tr>
<td>Figure 36</td>
<td>“TCPUDPDbg” Tools Connection</td>
<td>31</td>
</tr>
<tr>
<td>Figure 37</td>
<td>Wireless Control Application</td>
<td>31</td>
</tr>
<tr>
<td>Figure 38</td>
<td>Remote Management Application</td>
<td>32</td>
</tr>
<tr>
<td>Figure 39</td>
<td>Transparent Serial Port Application</td>
<td>32</td>
</tr>
<tr>
<td>Figure 40</td>
<td>HF-LPT120 Default UART Port Parameters</td>
<td>33</td>
</tr>
<tr>
<td>Figure 41</td>
<td>Switch to Configuration Mode</td>
<td>33</td>
</tr>
<tr>
<td>Figure 42</td>
<td>"AT+H" Instruction for Help</td>
<td>34</td>
</tr>
</tbody>
</table>
Figure 43. Reflow Soldering Profile ..52
Figure 44. Shipping Information ..53

LIST OF TABLES

Table1. HF-LPT120 Module Technical Specifications ..9
Table2. HF-LPT120 Pins Definition ..10
Table3. Absolute Maximum Ratings: ..11
Table4. Power Supply & Power Consumption: ...12
Table5. HF-LPT120 External Antenna Parameters ..13
Table6. HF-LPT120 Evaluation Kit Interface Description ..14
Table7. HF-LPT120 Web Access Default Setting ...23
Table8. Error Code Description ...35
Table9. AT+Instruction Set List ...35
Table10. Reflow Soldering Parameter ...52
HISTORY

Ed. V1.02 11-03-2015 First Version.
Ed. V1.03 11-11-2015 Modify IO PIN Description.
Ed. V1.1 12-21-2015 Update AT command supported by 2.0.01 version firmware.
Ed. V1.1.1 01-04-2016 Add HF-LPT100-A Type.
Ed. V1.2 01-29-2016 Modify HF-LPT100-A to HF-LPT100A Type, Update AT command supported by 2.0.03 version firmware. Add support for AT+ţE、AT+SOCKB、AT+TCPDISB、AT+TCP TOB、AT+TCP LKB、AT+WALK、AT+WALKIND command. Correct the AT+NETP command description.
Ed. V1.3 03-14-2015 Update AT command supported by 2.0.04 version firmware. Add support for AT+MAXSK、AT+WAPMXSTA command. Update AT+NETP、AT+UART command. **All the reserved function is not supported yet.** See appendix C to get new firmware.
Ed. V1.4 04-29-2016 Update AT command supported by 2.0.06 version firmware. Add support for AT+UPURL. Modify AT+UART flow control, modify AT+DISPS function. Update the new EVK data. See appendix C for new firmware. See LPB120 manual for the module usage and AT command list.
Ed. V1.5 10-25-2016 Update boot GPIO requirement.
Ed. V1.6 12-19-2016 Update 2.09-6 firmware webpage function, add the whole function into this manual.
1. PRODUCT OVERVIEW

1.1. General Description

The HF-LPT120 is a fully self-contained small form-factor, single stream, 802.11b/g/n Wi-Fi module, which provide a wireless interface to any equipment with a Serial/PWM interface for data transfer. HF-LPT120 integrate MAC, baseband processor, RF transceiver with power amplifier in hardware and all Wi-Fi protocol and configuration functionality and networking stack, in embedded firmware to make a fully self-contained 802.11b/g/n Wi-Fi solution for a variety of applications.

The HF-LPT120 employs the world's lowest power consumption embedded architecture. It has been optimized for all kinds of client applications in the home automation, smart grid, handheld device, personal medical application and industrial control that have lower data rates, and transmit or receive data on an infrequent basis.

The HF-LPT120 integrates all Wi-Fi functionality into a low-profile, 22mm x 13.5mm x 6mm module package that can be easily mounted on main PCB with application specific circuits. Also, module provides built-in antenna, external antenna option.

The HF-LPT120A module add shield and has passed FCC/CE/SRRC, the following description all use HF-LPT120 for the common function.

1.1.1 Device Features

- Support IEEE802.11b/g/n Wireless Standards
- Based on Self-developed High Cost Effective SOC
- Support UART/GPIO Data Communication Interface
- Support Work As STA/AP Mode
- Support Smart Link Function (APP program provide)
- Support Wireless and Remote Firmware Upgrade Function
- Support External I-PEX or Internal PCB Antenna Option(HF-LPT120)
- Support Copper Line Antenna(HF-LPT120A)
- Single +3.3V Power Supply
- Smallest Size: 22mm x 13.5mm x 6mm, 1x10 2mm Connector(HF-LPT120)
- Smallest Size: 22mm x 14.3mm x 6mm, 1x10 2mm Connector(HF-LPT120A)
- FCC/CE/SRRC Certificated
1.1.2 Device Parameters

Table 1. HF-LPT120 Module Technical Specifications

<table>
<thead>
<tr>
<th>Class</th>
<th>Item</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Parameters</td>
<td>Certification</td>
<td>FCC/CE/SRRC/RoHS</td>
</tr>
<tr>
<td></td>
<td>Wireless standard</td>
<td>802.11 b/g/n</td>
</tr>
<tr>
<td></td>
<td>Frequency range</td>
<td>2.412GHz-2.484GHz</td>
</tr>
<tr>
<td></td>
<td>Transmit Power</td>
<td>802.11b: +16 +/-2dBm (@11Mbps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>802.11g: +14 +/-2dBm (@54Mbps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>802.11n: +13 +/-2dBm (@HT20, MCS7)</td>
</tr>
<tr>
<td></td>
<td>Receiver Sensitivity</td>
<td>802.11b: -87 dBm (@11Mbps, CCK)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>802.11g: -73 dBm (@54Mbps, OFDM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>802.11n: -71 dBm (@HT20, MCS7)</td>
</tr>
<tr>
<td></td>
<td>Antenna Option</td>
<td>External: I-PEX Connector</td>
</tr>
<tr>
<td></td>
<td>HF-LPT120</td>
<td>Internal: PCB Printed Antenna</td>
</tr>
<tr>
<td></td>
<td>Internal:PCB Printed Antenna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HF-LPT120A</td>
<td>Internal: Copper Line Antenna</td>
</tr>
<tr>
<td>Hardware Parameters</td>
<td>Data Interface</td>
<td>UART</td>
</tr>
<tr>
<td></td>
<td>Operating Voltage</td>
<td>2.95~3.6V</td>
</tr>
<tr>
<td></td>
<td>Operating Current</td>
<td>Peak (Continuous TX): 280mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average (STA, Continuous TX): 100mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average (STA, No TX data): 30mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average (AP): 120mA</td>
</tr>
<tr>
<td></td>
<td>Operating Temp.</td>
<td>-20℃~85℃</td>
</tr>
<tr>
<td></td>
<td>Storage Temp.</td>
<td>-40℃~125℃</td>
</tr>
<tr>
<td></td>
<td>Dimensions and Size</td>
<td>22mm x 13.5mm x 6mm (HF-LPT120)</td>
</tr>
<tr>
<td></td>
<td>External Interface</td>
<td>1x10, 2mm DIP</td>
</tr>
<tr>
<td>Software Parameters</td>
<td>Network Type</td>
<td>STA /AP</td>
</tr>
<tr>
<td></td>
<td>Security Mechanisms</td>
<td>WEP/WPA-PSK/WPA2-PSK</td>
</tr>
<tr>
<td></td>
<td>Encryption</td>
<td>WEP64/WEP128/TKIP/AES</td>
</tr>
<tr>
<td></td>
<td>Update Firmware</td>
<td>Local Wireless, Remote</td>
</tr>
<tr>
<td></td>
<td>Customization</td>
<td>Support customization and SDK</td>
</tr>
<tr>
<td></td>
<td>Network Protocol</td>
<td>IPv4, TCP/UDP/HTTP</td>
</tr>
<tr>
<td></td>
<td>User Configuration</td>
<td>AT+instruction set, Android/ iOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smart Link APP tools</td>
</tr>
</tbody>
</table>

1.1.3 Key Application

- Remote equipment monitoring
- Asset tracking and telemetry
- Security
- Industrial sensors and controls
- Home automation
- Medical devices
1.2. Hardware Introduction

1.2.1. Pins Definition

![HF-LPT120 Pins Map](image)

Figure 1. HF-LPT120 Pins Map

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Net Name</th>
<th>Signal Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>GND</td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+3.3V Power</td>
<td>DVDD</td>
<td>Power</td>
<td>3.3V@300mA</td>
</tr>
<tr>
<td>3</td>
<td>Restore Configuration</td>
<td>nReload</td>
<td>I,PU</td>
<td>nReload Function GPIO_2, Leave it if not use Detailed functions see <Notes></td>
</tr>
<tr>
<td>4</td>
<td>Module Reset</td>
<td>EXT_RESETn</td>
<td>I,PU</td>
<td>“Low” effective hardware reset input. Leave it if not use</td>
</tr>
<tr>
<td>5</td>
<td>UART0</td>
<td>UART0_RX</td>
<td>I</td>
<td>UART0 Communication Input GPIO_19</td>
</tr>
<tr>
<td>6</td>
<td>UART0</td>
<td>UART0_TX</td>
<td>O,PU</td>
<td>UART0 Communication Output GPIO_20</td>
</tr>
<tr>
<td>7</td>
<td>UART1_TXD</td>
<td>GPIO_5</td>
<td>I,PU</td>
<td>UART1 Debug Output GPIO_5, Leave it if not use Detailed functions see <Notes></td>
</tr>
<tr>
<td>8</td>
<td>UART1_RXD</td>
<td>GPIO_6</td>
<td>I</td>
<td>UART1 Debug Input GPIO_6, Leave it if not use Detailed functions see <Notes></td>
</tr>
<tr>
<td>9</td>
<td>GPIO_3</td>
<td>nReady</td>
<td>I</td>
<td>nReady Function GPIO_3, Leave it if not use Detailed functions see <Notes></td>
</tr>
<tr>
<td>10</td>
<td>GPIO_15</td>
<td>nLink</td>
<td>I</td>
<td>nLink Function GPIO_15, Leave it if not use Detailed functions see <Notes></td>
</tr>
</tbody>
</table>

<Notes>

When bootup, module PIN6/PIN7 must be high, otherwise the module fail to work.

Reloading Pin (Button) function:
1. When this pin is set to “low” during module boot up, the module will enter wireless firmware and config upgrade mode. This mode is used for customer manufacture. (See Appendix D to download software tools for customer batch configuration and upgrade firmware during mass production)
2. After module is powered up, short press this button (“Low” < 2s) and loose to make the module go into “Smart Link “ config mode, waiting for APP to set password and other information. (See Appendix D to download SmartLink APP)
3. After module is powered up, long press this button (“Low” > 4s) and loose to make the module recover to factory setting.
High-Flying strongly suggest customer fan out this pin to connector or button for “Manufacture” and “ Smart Link” application.

nReady Pin (LED) function(Low effective):
1. OS initial finished indicator. Only after this pin output low, can the UART function be used.

nLink Pin (LED) function(Low effective):
1. At wireless firmware and config upgrade mode , this LED used to indicate configure and upgrade status.
2. At “Smart Link “ config mode, this LED used to indicate APP to finish setting.
3. At normal mode, it’s Wi-Fi link status indicator
High-Flying strongly suggest customer fan out this pin to LED.

UART1 Debug:
1. Enable UART1 log information output by AT+NDBGL=1,1 via UART0, UART1 baud rate is fixed at 115200.
2. After UART1 is enabled, it will output system run log information and it can direct process AT command(No need to enter command mode like UART0)

1.2.2. Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature range</td>
<td>-40</td>
<td></td>
<td></td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum soldering temperature</td>
<td>IPC/JEDEC J-STD-020</td>
<td></td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>0</td>
<td>3.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Voltage on any I/O pin</td>
<td>0</td>
<td>3.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ESD (Human Body Model HBM)</td>
<td>TAMB=25°C</td>
<td>2.5</td>
<td></td>
<td></td>
<td>KV</td>
</tr>
<tr>
<td>ESD (MM)</td>
<td>TAMB=25°C</td>
<td>0.25</td>
<td></td>
<td></td>
<td>KV</td>
</tr>
</tbody>
</table>
Table 4. Power Supply & Power Consumption:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Supply voltage</td>
<td></td>
<td>2.95</td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Supply current, peak</td>
<td>Continuous Tx</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current,</td>
<td>STA No data transfer</td>
<td>280</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current,</td>
<td>STA Continuous data transfer</td>
<td></td>
<td>30</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current,</td>
<td>AP</td>
<td></td>
<td>100</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

1.2.3. Mechanical Size

HF-LPT120 modules physical size (Unit: mm) as follows:

![Figure 2. HF-LPT120 Mechanical Dimension](image)
1.2.4. On-board PCB Antenna

HF-LPT120 module support internal on-board PCB antenna option. When customer select internal antenna, you shall comply with following antenna design rules and module location suggestions:

- For customer PCB, RED color region (8x10mm) can’t put componet or paste GND net;
- Antenna must away from metal or high components at least 10mm;
- Antenna can’t be shielded by any metal enclosure;

![Figure 3. HF-LPT120A Mechanical Dimension](image)

High-Flying suggest HF-LPT120 module better locate in following region at customer board, which to reduce the effect to antenna and wireless signal, and better consult High-Flying technical people when you structure your module placement and PCB layout.

1.2.5. External Antenna

HF-LPT120 supports two way of external antenna as the following picture show, The I-PEX interface or the PAD interface(remove the I-PEX connector). The user may choose one of them. If user select external antenna, HF-LPT120 modules must be connected to the 2.4G antenna according to IEEE 802.11b/g/n standards. We can provide external antenna if needed. Contact with our salesman.

The antenna parameters required as follows:

![Figure 4. Suggested Module Placement Region](image)

Table 5. HF-LPT120 External Antenna Parameters

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>2.4~2.5GHz</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ohm</td>
</tr>
<tr>
<td>VSWR</td>
<td>2 (Max)</td>
</tr>
<tr>
<td>Return Loss</td>
<td>-10dB (Max)</td>
</tr>
<tr>
<td>Connector Type</td>
<td>I-PEX or populate directly</td>
</tr>
</tbody>
</table>
1.2.6. Evaluation Kit

High-Flying provides the evaluation kit to promote user to familiar the product and develop the detailed application. The evaluation kit shown as below, user can connect to HF-LPT120 module with the RS-232 UART, or Wireless interface to configure the parameters, manage the module or do the some functional tests. The EVK support 5V DC power supply.

![Evaluation Kit Image]

Figure 6. LPT120/LPT220 EVK

Notes: User need download USB to UART port driver from High-Flying web or contact with technical support people for more detail.

The external interface description for evaluation kit as follows:

<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Interface</td>
<td>RS232</td>
<td>Main data/command RS-232 interface</td>
</tr>
<tr>
<td></td>
<td>USB</td>
<td>USB to UART interface</td>
</tr>
<tr>
<td></td>
<td>DC5V</td>
<td>DC jack for power in, 5V input.</td>
</tr>
<tr>
<td>LED</td>
<td>Power</td>
<td>Power LED</td>
</tr>
<tr>
<td></td>
<td>Ready</td>
<td>nReady LED</td>
</tr>
<tr>
<td></td>
<td>Link</td>
<td>nLink LED</td>
</tr>
<tr>
<td>Button</td>
<td>nReload</td>
<td>Restore factory default configuration after push this pin more than 4s. See 1.2.1</td>
</tr>
</tbody>
</table>

Table 6. HF-LPT120 Evaluation Kit Interface Description
1.2.7. Order Information

Base on customer detailed requirement, HF-LPT120 series modules provide different variants and physical type for detailed application.

Figure 7. HF-LPT120 Order Information

Figure 8. HF-LPT120A Order Information
1.3. Typical Application

1.3.1. Hardware Typical Application

![Diagram of HF-LPT120 Hardware Typical Application](image)

Figure 9. HF-LPT120 Hardware Typical Application

Notes:

nReset: Module hardware reset signal. Input. Logics “0” effective.
There is pull-up resister internal and no external pull-up required. When module power up or some issue happened, MCU need assert nRST signal “0” at least 10ms, then set “1” to keep module fully reset.

nReload: Module restore to factory default configuration. Input. Logics “0” effective.
(*This pin is recommend to connect to button, is used to enter wireless upgrade mode*)
User can de-assert nReload signal “0” more than 4s through button or MCU pin, then release, module will restore to factory default configuration and re-start boot up process. If nReload function not required, can leave this pin open.

UART0_TXD/RXD: UART port data transmit and receive signal.

nReady: Module boot up ready signal. Output. Logics “0” effective.
The module will output “0” after normal boot up. This signal used to judge if module finish boot up and ready for application or working at normal mode. If nReady function not required, can leave this pin open.

nLink: Module WIFI connection status indication. Output.
(*This pin is recommend to connect to LED, indicate status when the module in wireless upgrade mode*)
When module connects to AP (AP associated), this pin will output “0”. This signal used to judge if module already at WiFi connection status. There is pull-up resistor internal and no external pull-up required. If nLink function not required, can leave this pin open.

1.4. Internal PCB Antenna

![Figure 10. HF-LPT120 Antenna](image)

Antenna radiation efficiency 49.2%

![Figure 11. HF-LPT120 Antenna radiation pattern](image)

XY plane maximum gain: -1.21dB, minimum gain: -31.55dB
Figure 12. HF-LPT120 XY plane radiation pattern

XZ plane maximum gain: -0.99dB, minimum gain: -1.6dB

Figure 13. HF-LPT120XZ plane radiation pattern

YZ plane maximum gain: -0.99dB, minimum gain: -11.52dB

Figure 14. HF-LPT120YZ plane radiation pattern
2. FUNCTIONAL DESCRIPTION

2.1. Wireless Networking

HF-LPT120 module can be configured as both wireless STA and AP base on network type. Logically there are two interfaces in HF-LPT120. One is for STA, and another is for AP. When HF-LPT120 works as AP, other STA equipments are able to connect to HF-LPT120 module directly. Wireless Networking with HF-LPT120 is very flexible.

Notes:
AP: that is the wireless Access Point, the founder of a wireless network and the centre of the network nodes. The wireless router we use at home or in office may be an AP.

STA: short for Station, each terminal connects to a wireless network (such as laptops, PDA and other networking devices) can be called with a STA device.

2.1.1. Basic Wireless Network Based On AP (Infrastructure)

Infrastructure: it's also called basic network. It built by AP and many STAs which join in. The characters of network of this type are that AP is the centre, and all communication between STAs is transmitted through the AP. The figure following shows such type of networking.

![Figure 15. HF-LPT120 Basic Wireless Network Structure](image)

2.1.2. Wireless Network Based On STA

HF-LPT120 module support STA network mode.

![Figure 16. HF-LPT120 STA Network Structure](image)
2.2. Work Mode: Transparent Transmission Mode

HF-LPT120 module supports serial interface transparent transmission mode. The benefit of this mode is to provide a plug-and-play serial data port, reducing user complexity to the furthest extent. In this mode, users should only configure the necessary parameters. After power on, the module can automatically connect to the default wireless network and server.

As in this mode, the module’s serial port always works in the transparent transmission mode, so users only need to think of it as a virtual serial cable, and send and receive data as using a simple serial. In other words, the serial cable of users’ original serial devices is directly replaced with the module; user devices can be easy for wireless data transmission without any changes.

The transparent transmission mode can fully compatible with user’s original software platform and reduce the software development effort for integrate wireless data transmission.

The parameters which need to configure include:

- **Wireless Network Parameters**
 - Wireless Network Name (SSID)
 - Security Mode
 - Encryption Key

- **TCP/UDP Linking Parameters**
 - Protocol Type
 - Link Type (Server or Client)
 - Target Port ID Number
 - Target Port IP Address

- **Serial Port Parameters**
 - Baud Rate
 - Data Bit
 - Parity (Check) Bit
 - Stop Bit
 - Hardware Flow Control

2.3. Encryption

Encryption is a method of scrambling a message that makes it unreadable to unwanted parties, adding a degree of secure communications. There are different protocols for providing encryption, and the HF-LPT120 module supports the following:

- WEP
- WPA-PSK/TKIP
- WPA-PSK/AES
- WPA2-PSK/TKIP
- WPA2-PSK/AES

2.4. Parameters Configuration

HF-LPT120 module supports two methods to configuration parameters: AT+instruction set.
AT+instruction set configuration means user configure parameters through serial interface command. Refer to “AT+instruction set” chapter for more detail.

2.5. Firmware Update

HF-LPT120 module supports multiple upgrade methods:
- UART upgrade
- Local Network upgrade
- Remote upgrade

HF-LPT120 module support upgrade from remote HTTP server, keep module connects to AP router before execute remote HTTP upgrade.

Direct Download and Upgrade
AT+UPURL command to set the remote directory and file name, such as:
AT+UPURL=http://www.hi-flying.com/admin/down/lpb.bin
After execute this command, the module will directly download the “lpb.bin” file from remote directory and start upgrade Application.

Notes: please contact with high-flying technical people before upgrade firmware, or maybe damage the module and can’t work again.

2.6. SOCKET B Function

HF-LPT120 support double socket communication, the socket B function is disabled by default.

![Socket B function demo](image)

2.7. Multi-TCP Link Connection (Reserved)

When HF-LPT120 module SOCK A configured as TCP Server, it supports Multi-TCP link connection, and maximum 5 TCP clients permitted to connect to HF-LPT120 module. User can realize multi-TCP link connection at each work mode.
Multi-TCP link connection will work as following structure:

Upstream: All dates from different TCP connection or client will be transmitted to the serial port as a sequence.

Downstream: All data from serial port (user) will be replicate and broadcast to every TCP connection or client.

Detailed multi-TCP link data transmission structure as following figure:

![Multi-TCP Link Data Transmission Structure](image)

Figure 18. Multi-TCP Link Data Transmission Structure
3. OPERATION GUIDELINE

3.1. Configuration
When first use HF-LPT120 modules, user may need some configuration. User can connect to HF-LPT120 module's wireless interface with following default setting information and configure the module through laptop.

Table 7. HF-LPT120 Web Access Default Setting

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSID</td>
<td>HF-LPT120</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.10.100.254</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Account</td>
<td>admin</td>
</tr>
<tr>
<td>Password</td>
<td>admin</td>
</tr>
</tbody>
</table>

3.1.1. Open Web Management Interface
There is internal webpage and external webpage in modules. The external webpage is for web management. The internal webpage is only for upgrading.
Step 1: Connect laptop to SSID “HF-LPT120” of HF-LPT120 module via wireless LAN card;
Step 2: After wireless connection OK. Open Wen browser and access “http://10.10.100.254”;
Step 3: Then input user name and password in the page as following and click “OK” button.

![Open Web Management page]

The HF-LPT120 web management page support English and Chinese language. User can select language environment at the top right corner and click “Apply” button.

Note: Webpage function is 2.0.09-6 firmware new added., so the previous software version does not support webpage, but after upgrade to our latest, it can support this, see appendix latest firmware on
our website. For current module, we may not ship it with default webpage support, please manual upgrade if need to use this function or tell our sales to upgrade to this latest function before shipment.

3.1.2. System Page
At this page, user can check current device’s important information and status such as: device ID (MID), software version, wireless work mode and related Wi-Fi parameters.

![System Web Page](image)

Figure 20. System Web Page

3.1.3. Work Mode Page
HF-LPT120 module can works at AP mode to simplify user’s configuration, can also works at STA to connect remote server through AP router.

![Work Mode Page](image)

Figure 21. Work Mode Page
3.1.4. STA Setting Page

User can push “Scan” button to auto search Wi-Fi AP router nearby, and can connect with associate AP through some settings. Please note the encryption information input here must be fully same with Wi-Fi AP router's configuration, and then it can link with AP correctly.

![STA Setting Page](image)

Figure 22. STA Setting Page

![STA Scan Page](image)

Figure 23. STA Scan Page
3.1.5. AP Setting Page

When user select module works at AP and AP+STA mode, then need setting this page and provide wireless and network parameters. Most of the system support DHCP to achieve IP address, so we suggest to “Enable” DHCP server in most applications.

![AP Setting Page](image)

Figure 24. AP Setting Page

3.1.6. Other Setting Page

HF-LPT120 usually works at data transparent transmission mode. At this mode, the user device which connected with HF-LPT120 will connect and communicate with remote PC or server. At this page, user need setting serial port communication parameters and defines TCP related protocol parameters.

![Other Setting Page](image)

Figure 25. Other Setting Page
3.1.7. Account Management Page

This page sets the web server’s user name and password.

![Account Page](image)

Figure 26. Account Page

3.1.8. Upgrade Software Page

User can upgrade new software (firmware) version through Wi-Fi. After upgrade success, need to manually reboot it before new firmware is valid.

![Upgrade SW page](image)

Figure 27. Upgrade SW page

3.1.9. Restart Page

Most of the settings and configurations can only be effective after a system restart. User shall restart after completing all settings.

Shanghai High-Flying Electronics Technology Co., Ltd(www.hi-flying.com)
3.1.10. Restore Page

After module restore factory default setting, all user configuration profile will lose.

User can access http://10.10.100.254 to set again, and user name and password is “admin”. HF-LPT120 will restore to AP mode for factory default setting.

3.1.11. Internal Webpage

After wireless connection is OK. Open Wen browser and access “http://10.10.100.254/iweb.html”; It is for upgrading application and external webpage. After upgrade success, need reboot it manually before new firmware or webpage valid.
3.2. Usage Introduction

3.2.1. Software Debug Tools
High-Flying use two common software tools debugging and applying HF-LPT120 module. (User can also select other tools used to debug serial port).
- Serial Debugging Software: ComTools
- Ethernet Debugging Software: TCPUDPDbg

3.2.2. Network Connection
User can select two methods to connect HF-LPT120 module base on dedicated application.
- **Use HF-LPT120 STA interface.** HF-LPT120 and debug PC2 connect to a wireless AP, another PC1 (or user device) connect to HF-LPT120 module with serial port:

![STA Interface Debug Connection](image)

- **Use HF-LPT120 AP interface.** Debug PC2 connect to HF-LPT120 through wireless connection, another PC1 (or user device) connect to HF-LPT120 module with serial port:

![AP Interface Debug Connection](image)

3.2.3. Default Parameter Setting
- Default SSID: HF-LPT120;
- Default security mode: open, none;
3.2.4. Module Debug

PC1 open “CommTools” program, setting the same serial port parameters with HF-LPT120 module and open serial port connection.

PC2 open “TCPUDPDbg” program, and create a new connection. If HF-LPT120 configured as Server mode, “TCPUDPDbg” Tools shall create “Client” mode connection. Or otherwise, create a “Server” mode connection.

Then setting the TCP/UDP connection parameters. Default as following:
Figure 35. “TCPUDPDbg” Tools Setting

Then, click “Create” button to create a connection.

Now, in transparent transmission mode, data can be transferred from “CommTools” program to “TCPUDPDbg” program, or in reverse. You can see data in receiver side will keep same as in sender side.

3.3. Typical Application Examples

3.3.1. Wireless Control Application

For this wireless control application, HF-LPT120 works as AP mode. Module’s serial port connects to user device. So, control agent (Smart phone for this example) can manage and control the user device through the wireless connection with HF-LPT120 module.

3.3.2. Remote Management Application
Figure 38. Remote Management Application

For this remote management application, HF-LPT120 works as STA mode and connects to Internet through wireless AP. Module configured as TCP Client and communicates with remote TCP server at Internet. Module’s serial port connects to user device.

So, user device’s data or sampling information can send to remote TCP server for storage or processing. Also remote TCP server can send command to control and manage the user device through the wireless network.

3.3.3. Transparent Serial Port Application

For this transparent serial port application, two HF-LPT120 modules connect as below figures to build up a transparent serial port connection. One HF-LPT120 works as AP mode, another HF-LPT120 works as STA mode. Make the STA device connects to AP.

Figure 39. Transparent Serial Port Application
4. AT+INSTRUCTION INTRODUCTION

4.1. Configuration Mode
When HF-LPT120 power up, it will default works as transparent transmission mode, then user can switch to configuration mode by serial port command. HF-LPT120 UART default parameters setting as below figure,

![Figure 40. HF-LPT120 Default UART Port Parameters](image)

In configuration mode, user can setting the module through AT+instruction set, which cover all web page setting function.

4.1.1. Switch to Configuration Mode
Two steps to finish switching from transparent transmission mode to configuration mode.

- UART input “+++”, after module receive “+++”, and feedback “a” as confirmation.
- UART input “a”, after module receive “a” and feedback “+ok” to go into AT+instruction set configuration mode.

![Figure 41. Switch to Configuration Mode](image)

Notes:
1. When user input “+++” (No “Enter” key required), the UART port will display feedback information “a”, and not display input information “+++” as above UART display.
2. Any other input or wrong step to UART port will cause the module still works as original mode (transparent transmission).

3. “+++” and “a” should be input in a certain period of time to make the module switch to configuration mode. Like the following sequence.

```
input "+++

< 300ms

input "+"

< 300ms

input "a"

< 3s

feedback "a"
```

4.2. AT+Instruction Set Overview

User can input AT+Instruction through hyper terminal or other serial debug terminal, also can program the AT+Instruction to script. User can also input “AT+H” to list all AT+Instruction and description to start.

```
AT+H
+ok
```

Figure 42. “AT+H” Instruction for Help

4.2.1. Instruction Syntax Format

AT+Instruction protocol is based on the instruction of ASCII command style, the description of syntax format as follow.

- **Format Description**
 - `< >`: Means the parts must be included
 - `[]`: Means the optional part

- **Command Message**
AT+<CMD>[op][para-1,para-2,para-3,para-4…]<CR>

- AT+: Prefix of command message;
- CMD: Command string;
- [op]: Symbol of command operator,
 - “=”: The command requires parameters input;
 - “NULL”: Query the current command parameters setting;
- [para-n]: Parameters input for setting if required;
- <CR>: “Enter” Key, it’s 0x0a or 0x0d in ASCII;

Notes: When input AT+Instruction, “AT+<CMD>” character will display capital letter automatic and other parts will not change as you input.

- **Response Message**

 +<RSP>[op] [para-1,para-2,para-3,para-4…]<CR><LF><CR><LF>

 - +: Prefix of response message;
 - RSP: Response string:
 - “ok”: Success
 - “ERR”: Failure
 - [op]: =
 - [para-n]: Parameters if query command or Error code when error happened;
 - <CR>: ASCII 0x0d;
 - <LF>: ASCII 0x0a;

- **Error Code**

 Table8. Error Code Description

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Invalid Command Format</td>
</tr>
<tr>
<td>-2</td>
<td>Invalid Command</td>
</tr>
<tr>
<td>-3</td>
<td>Invalid Operation Symbol</td>
</tr>
<tr>
<td>-4</td>
<td>Invalid Parameter</td>
</tr>
<tr>
<td>-5</td>
<td>Operation Not Permitted</td>
</tr>
</tbody>
</table>

4.2.2. AT+Instruction Set

Table9. AT+Instruction Set List

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><null></td>
<td>NULL</td>
</tr>
<tr>
<td>Managment Instruction Set</td>
<td>Open/Close show back function</td>
</tr>
<tr>
<td>WMODE</td>
<td>Set/Query Wi-Fi work mode (AP/STA)</td>
</tr>
<tr>
<td>ENTM</td>
<td>Set module into transparent transition mode</td>
</tr>
<tr>
<td>MID</td>
<td>Query module ID information</td>
</tr>
<tr>
<td>Instruction</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>VER</td>
<td>Query module software version information</td>
</tr>
<tr>
<td>BVER</td>
<td>Query module bootloader version</td>
</tr>
<tr>
<td>RELD</td>
<td>Restore to factory default setting</td>
</tr>
<tr>
<td>FCLR</td>
<td>Erase factory setting</td>
</tr>
<tr>
<td>Z</td>
<td>Re-start module</td>
</tr>
<tr>
<td>H</td>
<td>Help</td>
</tr>
</tbody>
</table>

Configure Parameters Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFGTF</td>
<td>Copy User Parameters to Factory Default Parameters</td>
</tr>
</tbody>
</table>

UART Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART</td>
<td>Set/Query serial port parameters</td>
</tr>
</tbody>
</table>

Network Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETP</td>
<td>Set/Query network protocol parameters</td>
</tr>
<tr>
<td>MAXSK</td>
<td>Set/Query TCP Client connection number</td>
</tr>
<tr>
<td>TCPLK</td>
<td>Query if TCP link already build-up</td>
</tr>
<tr>
<td>TCPTO</td>
<td>Set/Query TCP timeout</td>
</tr>
<tr>
<td>TCPDIS</td>
<td>Open/Close TCP link</td>
</tr>
<tr>
<td>SOCKB</td>
<td>Set/Query SOCKB parameters</td>
</tr>
<tr>
<td>TCPSDB</td>
<td>Open/Close SOCKB TCP link</td>
</tr>
<tr>
<td>TCPTOB</td>
<td>Set/Query SOCKB TCP timeout</td>
</tr>
<tr>
<td>TCPLLKB</td>
<td>Query if SOCKB TCP link already build-up</td>
</tr>
</tbody>
</table>

Wi-Fi STA Instruction Set (Effective when module works as STA)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSKEY</td>
<td>Set/Query STA security parameters</td>
</tr>
<tr>
<td>WSSSID</td>
<td>Set/Query associated AP SSID parameters</td>
</tr>
<tr>
<td>WANN</td>
<td>Set/Query STA’s network parameters</td>
</tr>
<tr>
<td>WSMAC</td>
<td>Set/Query mode MAC address</td>
</tr>
<tr>
<td>WSLK</td>
<td>Query STA Wi-Fi link status</td>
</tr>
<tr>
<td>WSLQ</td>
<td>Query STA Wi-Fi signal strength</td>
</tr>
<tr>
<td>WSCAN</td>
<td>Scan AP</td>
</tr>
</tbody>
</table>

Wi-Fi AP Instruction Set (Effective when module works as AP)

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANN</td>
<td>Set/Query AP’s network parameters</td>
</tr>
<tr>
<td>WAP</td>
<td>Set/Query AP Wi-Fi parameters</td>
</tr>
<tr>
<td>WAKEY</td>
<td>Set/Query AP security parameters</td>
</tr>
<tr>
<td>WADHCPS</td>
<td>Set/Query AP DHCP Server status</td>
</tr>
<tr>
<td>WALK</td>
<td>Query MAC address of STA device connecting to module AP</td>
</tr>
<tr>
<td>WALKIND</td>
<td>Enable/Disable indication of connection status.</td>
</tr>
<tr>
<td>WAPMXSTA</td>
<td>Set/Query max STA devices supported for AP</td>
</tr>
</tbody>
</table>

Remote Upgrade Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTA</td>
<td>Upgrade Firmware</td>
</tr>
<tr>
<td>UPURL</td>
<td>Set/Query remote upgrade URL address</td>
</tr>
</tbody>
</table>

Power Management Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPS</td>
<td>Set/Query power save parameters</td>
</tr>
</tbody>
</table>

Webpage Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANG</td>
<td>Set/Query webpage language</td>
</tr>
<tr>
<td>WEBU</td>
<td>Set/Query webpage login account</td>
</tr>
</tbody>
</table>

Others Instruction Set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRMD</td>
<td>Set module ID</td>
</tr>
<tr>
<td>ASWD</td>
<td>Set/Query WiFi configuration code</td>
</tr>
<tr>
<td>SMTLK</td>
<td>Start SmartLink function</td>
</tr>
<tr>
<td>SMEM</td>
<td>Query RAM status</td>
</tr>
<tr>
<td>NDBGL</td>
<td>Set UART debug information</td>
</tr>
</tbody>
</table>
4.2.2.1. AT+E

- Function: Open/Close show back function;
- Format:
 - Set Operation
 `AT+E=status<CR>`
 `+ok<CR><LF><CR><LF>`
- Parameters:
 - status: Echo status
 - on: Open echo
 - off: Close echo

When HF-LPT120 module firstly switch from transparent transmission to configuration mode, show back status is open, input “AT+E” to close show back function, input “AT+E” again to open show back function, use AT+E=on/off command to save the echo status.

4.2.2.2. AT+WMODE

- Function: Set/Query Wi-Fi work mode. Setting is valid after reset;
- Format:
 - Query Operation
 `AT+WMODE<CR>`
 `+ok=<mode><CR><LF><CR><LF>`
 - Set Operation
 `AT+WMODE=mode<CR>`
 `+ok<CR><LF><CR><LF>`
- Parameters:
 - mode: Wi-Fi work mode
 - AP
 - STA

4.2.2.3. AT+ENTM

- Function: Set module into transparent transmission mode;
- Format:
 - `AT+ENTM<CR>`
 `+ok<CR><LF><CR><LF>`

When operate this command, module switch from configuration mode to transparent transmission mode.

4.2.2.4. AT+MID

- Function: Query module ID information;
- Format:
 - Query Operation
 `AT+MID<CR>`
 `+ok=<module_id><CR><LF><CR><LF>`
- Parameters:
 - module_id: Module ID information;
4.2.2.5. AT+VER
- Function: Query module software version information;
- Format:
 - Query Operation
 `AT+VER<CR>`
 `+ok=<ver><LF><CR><LF>`
- Parameters:
 - `ver`: Module software version information;

4.2.2.6. AT+BVER
- Function: Query module bootloader software version information
- Format:
 - Query Operation
 `AT+LVER<CR>`
 `+ok=<ver><LF><CR><LF>`
- Parameters:
 - `ver`: Module bootloader version information;

Bootloader is for module upgrade firmware via UART. See details on our website about the module firmware download page.

4.2.2.7. AT+RELD
- Function: module restore to factory default setting;
- Format:
 - Set Operation
 `AT+RELD<CR>`
 `+ok=rebooting…<CR><LF><CR><LF>`

When operate this command, module will restore to factory default setting and reboot.

4.2.2.8. AT+FCLR
- Function: Erase factory setting;
- Format:
 - Query Operation
 `AT+FCLR<CR>`
 `+ok=<status><LF><CR><LF>`

4.2.2.9. AT+Z
- Function: Re-start module;
- Format:
 `AT+Z<CR>`

4.2.2.10. AT+H
- Function: Help;
4.2.2.11. AT+CFGTF

- **Function:** Copy User Parameters to Factory Default Parameters;
- **Format:**
 - Query Operation

    ```
    AT+CFGTF<CR>
    +ok=<status><CR><LF><CR><LF>
    ```

- **Parameters:**
 - `status`: feedback operation status;

4.2.2.12. AT+UART

- **Function:** Set/Query serial port parameters. Setting is valid after reset.
- **Format:**
 - Query Operation

    ```
    AT+UART=uart_num<CR>
    +ok=baudrate,data_bits,stop_bit,parity,flowctrl<CR><LF><CR><LF>
    ```

 - Set Operation

    ```
    AT+UART=baudrate,data_bits,stop_bit,parity,flowctrl[,uart_num]<CR>
    +ok<CR><LF><CR><LF>
    ```

- **Parameters:**
 - `uart_num`: UART Channel, the default is UART0.
 - 0: UART0 Channel
 - `baudrate`:
 - 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 380400, 460800, 921600
 - `data_bits`:
 - 8
 - `stop_bits`:
 - 1, 2
 - `parity`:
 - NONE
 - EVEN
 - ODD
 - `Flowctrl`: (CTSRTS),
 - NFC: No hardware flow control
 - FC: hardware flow control (Not supported)
4.2.2.13. AT+NETP

- Function: Set/Query network protocol parameters, Setting is valid after reset.
- Format:
 - Query Operation

 AT+NETP<CR>
 +ok=protocol,CS,port,IP<CR><LF><LF>
 - Set Operation

 AT+NETP=protocol,CS,port,IP<CR>
 +ok<CR><LF><CR><LF>

- Parameters:
 - protocol:
 - TCP
 - UDP
 - CS: Network mode:
 - SERVER
 - CLIENT
 - Port: protocol port ID: Decimal digit and less than 65535
 - IP: Server's IP address when module set as client

 If set as UDP SERVER, the module will save the IP address and port of the latest UDP packet received. The data will be sent to the saved IP address and port. If the module hasn’t saved any IP address and port when power up, the data will be sent to the IP address and port which is set by this command.

 If set as UDP,CLIENT, the data will always be sent to the IP address and port set by this command.

4.2.2.14. AT+MAXSK

- Function: Set/ Query TCP Client connection number.
- Format:
 - Query Operation

 AT+MAXSK<CR>
 +ok=num<CR><LF><CR><LF>
 - Set Operation

 AT+MAXSK=num<CR>
 +ok<CR><LF><CR><LF>

- Parameters:
 - num: TCP Client connection number. Range: 1~5. 5 is the default value it means when the module work in TCP server, it accepts max 5 TCP client connect to it.

4.2.2.15. AT+TCPLK

- Function: Query if TCP link already build-up;
- Format:

 AT+TCPLK<CR>
 +ok=sta<CR><LF><CR><LF>

- Parameters:
4.2.2.16. AT+TCPTO

- Function: Set/Query TCP timeout; Setting is valid after reset.
- Format:
 - Query Operation

AT+TCPTO<CR>
+ok=time<CR><LF><LF>

- Set Operation

AT+TCPTO=time<CR>
+ok<CR><LF><LF>

- Parameters:
 - time: TCP timeout time.
 - \(\leq 600 \) (600s);
 - \(\geq 0 \) (0 means no timeout);
 - Default, 300s;

Module begin to count time when TCP channel don’t receive any data, clecherar time counter when TCP channel receive any data. If the time counter reaches the TCPTO, the tcp channel will be break. If the module work in TCP Client, it will connect the TCP server instantly and when the module work in TCP Server, the TCP client device should make the connection itself.

4.2.2.17. AT+TCPDIS

- Function: Open/Close TCP link;
- Format:
 - Query Opera

AT+TCPDIS<CR>
+ok=sta><CR><LF><LF>

- Set Operation

AT+TCPDIS=on/off><CR>
+ok<CR><LF><LF>

- Parameters:
 When query, sta.: Feedback if TCP Client can be link,
 - On, TCP link close
 - off, TCP link on

When setting, “off” means close TCP link. After finish this command, module disconnect TCP link and not connect again. “On” means open TCP link. After finish this command, module reconnect TCP server right away.

4.2.2.18. AT+SOCKB

- Function: Set/Query SOCKB parameters. Setting is valid after reset.
- Format:
4.2.2.19. AT+TCPDISB

Function: Open/Close SOCKB connection

Format:

查询操作

AT+TCPDISB<CR>
+ok=<sta><CR><LF><CR><LF>

设置操作

AT+TCPDISB=<on/off><CR>
+ok<CR><LF><CR><LF>

参数:

- 当设置时，"off"意味着关闭TCP连接。完成后此命令，模块断开TCP连接并重新连接。
- "On"意味着打开TCP连接。完成后此命令，模块直接连接TCP服务器。

4.2.2.20. AT+TCPTOB

Function: Set/Query Operation SOCKB TCP timeout. Setting is valid after reset.

Format:

查询操作

AT+TCPTOB<CR>
+ok=<time><CR><LF><CR><LF>

设置操作

AT+TCPTOB=<time><CR>
+ok<CR><LF><CR><LF>

参数
4.2.2.21. AT+TCPLKB

- Function: Query SOCKB connection status
- Format:
  ```
  AT+TCPLKB<CR>
  +ok=<sta><CR><LF><CR><LF>
  ```
- Parameters:
 - sta.: SOCKB connection status
 - on: TCP connected
 - off: TCP disconnected

4.2.2.22. AT+WSSSID

- Function: Set/Query Wi-Fi associated AP SSID parameters. Setting is valid after reset.
- Format:
 - Query Operation
    ```
    AT+WSSSID<CR>
    +ok=<ap's ssid><CR><LF><CR><LF>
    ```
 - Set Operation
    ```
    AT+WSSSID=<ap's ssid><CR>
    +ok<CR><LF><CR><LF>
    ```
- Parameters:
 - ap's ssid: AP’s SSID (Within 32 character);

4.2.2.23. AT+WSKEY

- Function: Set/Query STA security parameters. Setting is valid after reset.
- Format:
 - Query Operation
    ```
    AT+WSKEY<CR>
    +ok=<auth,encry,key><CR><LF><CR><LF>
    ```
 - Set Operation
    ```
    AT+WSKEY=< auth,encry,key><CR>
    +ok<CR><LF><CR><LF>
    ```
- Parameters:
 - auth: Authentication mode
 - OPEN
 - SHARED
 - WPAPSK
4.2.2.24. AT+WANN

- Function: Set/Query STA network setting. Setting is valid after reset.
- Format:
 - Query Operation
    ```
    AT+WANN<CR>
    +ok=<mode,address,mask,gateway><CR><LF><LF>
    ```
 - Set Operation
    ```
    AT+WANN=< mode,address,mask,gateway ><CR>
    +ok<CR><LF><LF>
    ```
- Parameters:
 - mode: STA's IP network setting
 - static: Static IP
 - DHCP: Dynamic IP
 - address: STA IP address;
 - mask: STA subnet mask;
 - gateway: STA gateway address;

4.2.2.25. AT+WSMAC

- Function: Set/Query Module MAC address parameters. Setting is valid after reset.
- Format:
 - Query Operation
    ```
    AT+WSMAC<CR>
    +ok=<mac_address><CR><LF><LF>
    ```
 - Set Operation
    ```
    AT+WSMAC=<code,mac_address><CR>
    +ok<CR><LF><CR><LF>
    ```
- Parameters:
 - code: security code
 - 8888 (default value)
 - Mac_address: module MAC address, such as ACCF23FF1234
4.2.2.26. AT+WSLK

- Function: Query STA WiFi link status
- Format:
 - Query Operation

 \texttt{AT+WSLK<CR>}

 +ok=<ret><LF><CR><LF>

 Parameters:
 - ret
 - "Disconnected", if no WiFi connection;
 - "AP's SSID (AP’s MAC)", if WiFi connection available;

4.2.2.27. AT+WSLQ

- Function: Query STA WiFi signal strength;
- Format:
 - Query Operation

 \texttt{AT+WSLQ<CR>}

 +ok=<ret><LF><CR><LF>

 Parameters:
 - ret
 - "Disconnected", if no WiFi connection;
 - "AP's WiFi signal strength", if WiFi connection available;

4.2.2.28. AT+WSCAN

- Function: Scan AP;
- Format:
 - Query Operation

 \texttt{AT+WSCAN<CR>}

 +ok=<ap_site><LF><CR><LF>

 Parameters:
 - ap_site: AP searched;

4.2.2.29. AT+LANN

- Function: Set/Query AP’s network parameters. Setting is valid after reset.
- Format:
 - Query Operation

 \texttt{AT+LANN<CR>}

 +ok=<ipaddress,mask><LF><CR><LF>

 - Set Operation

 \texttt{AT+LANN=< ipaddress,mask><CR>}

 +ok<CR><LF><CR><LF>

 Parameters:
 - ipaddress: AP’s IP address;
 - mask: AP’s net mask;
4.2.2.30. AT+WAP

- Function: Set/Query AP Wi-Fi parameters. Setting is valid after reset.
- Format:
 - Query Operation

 \textbf{AT+WAP}<CR>

 +ok=<wifi_mode,ssid,channel><LF><CR><LF>

- Set Operation

\textbf{AT+WAP}=<wifi_mode,ssid,channel><CR>

+ok<CR><LF><CR><LF>

- Parameters:
 - wifi_mode: Wi-Fi mode, include:
 - 11B
 - 11BG
 - 11BGN (Default Value)
 - ssid: SSID at AP mode, the maximum length is 32.
 - channel: Wi-Fi channel selection:
 - AUTO;(Default CH1)
 - CH1~CH11;

4.2.2.31. AT+WAKEY

- Function: Set/Query AP Wi-Fi security parameters. Setting is valid after reset.
- Format:
 - Query Operation

\textbf{AT+WAKEY}<CR>

+ok=<auth,encry,key><LF><CR><LF>

- Set Operation

\textbf{AT+WAKEY}=< auth,encry,key><CR>

+ok<CR><LF><CR><LF>

- Parameters:
 - auth: include
 - OPEN
 - WPA2PSK
 - Encry: include
 - NONE: When "auth=OPEN" available;
 - AES: When "auth=WPA2PSK" available;
 - key: security code, ASCII code, smaller than 64bit and bigger than 8 bit;

4.2.2.32. AT+WADHCP

- Function: Set/Query AP DHCP server status; Setting is valid after reset.
- Format:
 - Query Operation

\textbf{AT+WADHCP}<CR>

+ok=<status>,<ip1>,<ip2><CR><LF><CR><LF>

- Set Operation
4.2.2.33. AT+WADHCP

- Function: Query MAC address of STA device connecting to module AP
- Format:
 ◆ Query Operation
 `AT+WADHCP=<status>[.ip1,ip2]<CR>`
 `+ok<CR><LF><CR><LF>`
 ◆ Parameters:
 ◆ status: AP’s DHCP server function status:
 ◇ on: DHCP Server Open;
 ◇ off: DHCP Server Close;
 ◆ ip1: DHCP allocate IP start value.
 ◆ ip2: DHCP allocate IP end value.

4.2.2.34. AT+WALK

- Function: Query MAC address of STA device connecting to module AP
- Format:
 ◆ Query Operation
 `AT+WALK<CR>`
 `+ok=<status><CR><LF><CR><LF>`
 ◆ Parameters:
 ◆ status: MAC address of STA device connecting to module AP.
 ◇ No Connection: No STA device connecting to module AP;

4.2.2.35. AT+WALKIND

- Function: Enable/Disable indication of module AP connection status.
- Format:
 ◆ Query Operation
 `AT+WALKIND<CR>`
 `+ok=<status><CR><LF><CR><LF>`
 ◆ Set Operation
 `AT+WALKIND=<status><CR>`
 `+ok<CR><LF><CR><LF>`
 ◆ Parameters:
 ◆ status: indication of module AP connection status.
 ◇ on: Enable nLink indication function. When STA device connecting to module AP, nLink output Low, otherwise output High.
 ◇ off: Disable nLink indication function. (default mode).

4.2.2.36. AT+WAPMXSTA

- Function: Set/Query max STA number supported for AP.
- Format:
 ◆ Query Operation
 `AT+WAPMXSTA<CR>`
 `+ok=<num><CR><LF><CR><LF>`
 ◆ Set Operation
 `AT+WAPMXSTA=<num><CR>`
 `+ok<CR><LF><CR><LF>`
 ◆ Parameters:
num: max STA number supported for AP.

1~4: Support max 1~4 STA devices connects to module AP. 0 is default value for max 1 STA device supported.

4.2.2.36. AT+OTA

- Function: Set OTA Upgrade
- Format:
 - Set Operation

```
AT+OTA<CR>
+ok=<CR><LF><CR><LF>
```

Note: See Appendix C Module Upgrade for detail

4.2.2.37. AT+UPURL

- Function: Set/Query remote upgrade URL address;
- Format:
 - Query Operation

```
AT+UPURL<CR>
+ok=<url><CR><LF><CR><LF>
```

- Set Operation

```
AT+UPURL=<url,filename><CR>
+ok<CR><LF><CR><LF>
```

- Parameters:
 - url: the upgrade file url address; the last charter shall be “/” (within 20 characters).
 - filename: the upgrade file name, it’s optional and not saved parameter. If provide this file name here, the module will start upgrade right away;

4.2.2.38. AT+DISPS

- Function: Set/Query power save parameters;
- Format:
 - Query Operation

```
AT+DISPS<CR>
+ok=<ret><CR><LF><CR><LF>
```

- Set Operation

```
AT+DISPS=<mode,time><CR><LF><CR><LF>
```

- Parameters:
 - ret:
 - No: Enable power save
 - Yes: Disable power save
 - Auto: Auto power save mode(default), enter power saving mode after receive or send data in time seconds.
 - mode:
 - No: Enable power save
 - Yes: Disable power save
4.2.2.39. AT+PLANG

- Function: Set/Query webpage language option;
- Format:
 - Query Operation

```
AT+PLANG<CR>
+ok=<language> <CR><LF><LF>
```
 - Set Operation

```
AT+PLANG=<language> <CR>
+ok<CR><LF><CR><LF>
```
- Parameters:
 - language: webpage's language
 - CN: Chinese Version (Default);
 - EN: English Version;

4.2.2.40. AT+WEBU

- Function: Set/Query webpage user name and password; Setting is valid after reset.
- Format:
 - Query Operation

```
AT+WEBU<CR>
+ok=<username,password> <CR><LF><LF>
```
 - Set Operation

```
AT+WEBU=<username,password><CR>
+ok<CR><LF><CR><LF>
```
- Parameters:
 - username: User Name, within 15 characters, not support empty.
 - password: password, within 15 characters, support empty.

4.2.2.41. AT+WRMID

- Function: Set module ID;
- Format:
 - Set Operation

```
AT+WRMID=<wrmid> <CR><LF><CR><LF>
```
- Parameters:
 - wrmid: set module’s ID (within 20 characters).

4.2.2.42. AT+ASWD

- Function: Set/Query WiFi Configuration Password;
- Format:
 - Query Operation

```
AT+ASWD<CR>
```
4.2.2.43. AT+SMTLK

- Function: Start SmartLink function
- Format:
 - Query Operation

```
AT+SMTLK<CR>
```

SmartLink is a One-Key config function. Configure the module connecting to router easily. After starting the SmartLink function, the module works in SmartLink status and nLink LED is fast flashing waiting for APP to push information. See the Appendix for more details.

4.2.2.44. AT+SMEM

- Function: Query the RAM status.
- Format:
 - Query Operation

```
AT+SMEM<CR>
```

```
+ok=<status><CR><LF><CR><LF>
```

- Parameters:
 - status: The RAM status, the last number is the free memory size that can be used.

```
AT+SMEM
+ok=mem:6624,6624,0,46324
uart send:0
uart recv:12
uart buffer full:0
socketa send:0
socketa recv:0
socketa buffer full:0
```

4.2.2.45. AT+NDBGL

- Function: Enable/Disable UART debug information
- Format:
 - Query Operation

```
AT+NDBGL<CR>
```

```
+ok=<debug_level,uart_num><CR><LF><CR><LF>
```

- Parameters:
 - debug_level: UART debug level value
 - 0: Disable debug information output
 - 1~XX: Output UART debug information which is with the same (and above) debug level value
uart_level: UART debug information output channel
 0: UART0
 1: UART1
5. PACKAGE INFORMATION

5.1. Recommended Reflow Profile

Figure 43. Reflow Soldering Profile

Table 10. Reflow Soldering Parameter

<table>
<thead>
<tr>
<th>NO.</th>
<th>Item</th>
<th>Temperature (Degree)</th>
<th>Time(Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reflow Time</td>
<td>Time of above 220</td>
<td>35~55 sec</td>
</tr>
<tr>
<td>2</td>
<td>Peak-Temp</td>
<td>260 max</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Recommend to supply N2 for reflow oven.
2. N2 atmosphere during reflow (O2<300ppm)

5.2. Device Handling Instruction (Module IC SMT Preparation)

1. Shelf life in sealed bag: 12 months, at <30℃ and <60% relative humidity (RH)
2. After bag is opened, devices that will be re-baked required after last baked with window time 168 hours.
3. Recommend to oven bake with N2 supplied
4. Recommend end to reflow oven with N2 supplied
5. Baked required with 24 hours at 125±5℃ before rework process
6. Recommend to store at ≤10% RH with vacuum packing
7. If SMT process needs twice reflow:
 (1) Top side SMT and reflow
 (2) Bottom side SMT and reflow
 Case 1: Wifi module mounted on top side. Need to bake when bottom side process over 168 hours window time, no need to bake within 168 hours
 Case 2: Wifi module mounted on bottom side, follow normal bake rule before process

Note: Window time means from last bake end to next reflow start that has 168 hours space.
5.3. Shipping Information

TRAY
Size: 350*260*20 mm

BOX
Size: 350*260*160 mm (inside)

Figure 44. Shipping Information

Note:

1 tray = 20*6pcs = 120 pcs
LPT120: 1 box = 8 trays = 8 * 120 pcs = 960 pcs
LPT120A: 1 box = 4 trays = 4 * 120 pcs = 480 pcs
APPENDIX A: HW REFERENCE DESIGN

Detailed HF-LPT120 Evaluation Board design source files, pls access High-Flying web download page or contact with High-Flying technical support people to acquire.
APPENDIX B: HTTP PROTOCOL TRANSFER

HF-LPT120 module supports HTTP data transfer in throughput mode. If any detailed HTTP protocol is required, contact us and we may support customization.

B.1. Sending HTTP Raw Data in Throughput Mode

Step 1. Configure HTTP server information

```
AT+NHTTP-tcp, client, 80, testnewjava.gotoip4.com
+OK
```

Step 2. Configure module connecting to router AP and reboot.

```
AT+W5SSID=Tenda_GYH +OK
AT+W5KEY=wpa2psk,aes,12345678 +OK
AT+WMODE=STA +OK
AT+Z
```

Step 3. Sending HTTP raw data via UART, end the data with <CR><LF><CR><LF>
APPENDIX C: REFERENCES

C.1. High-Flying Mass Production Tool
Download Address: http://www.hi-flying.com/download_detail_dc/downloadsId=9.html

C.2. SmartLink APP V7 Config Tool
IOS Platform: http://www.hi-flying.com/download_detail_dc/downloadsId=42.html

C.3. EVK Quick Start Guide
Download Address: http://www.hi-flying.com/downloadsfront.do?method=picker&flag=all&id=a974580c-9a9b-4329-a554-6bd54aa8500d&fileId=99

C.4. Module Upgrade
Download Address: http://www.hi-flying.com/download_detail_fir/downloadsId=75.html

C.5. Other Tools
Download Address: http://www.hi-flying.com/download_list_dc/&downloadcategoryid=14&isMode=false&comp_stats=comp-FrontDownloadsCategory_show01-1376450727769.html
APPENDIX D: CONTACT INFORMATION

Address: Room 1002, Building 1, No. 3000, Longdong Avenue, Pudong New Area, Shanghai, China, 201203
Web: www.hi-flying.com
Service Online: 400-189-3108/18616078755
Sales Contact: sales@hi-flying.com

For more information about High-Flying modules, applications, and solutions, please visit our web site http://www.hi-flying.com/en/

<END OF DOCUMENT>